Analysis and Application of Multispectral Data for Water Segmentation Using Machine Learning

نویسندگان

چکیده

Monitoring water is a complex task due to its dynamic nature, added pollutants, and land build-up. The availability of high-resolution data by Sentinel-2 multispectral products makes implementing remote sensing applications feasible. However, overutilizing or underutilizing bands the product can lead inferior performance. In this work, we compare performances ten out thirteen available in for segmentation using eight machine learning algorithms. We find that shortwave-infrared (B11 B12) are most superior segmenting bodies. B11 achieves an overall accuracy $$71\%$$ while B12 $$69\%$$ across all algorithms on test site. also Support Vector Machine (SVM) algorithm favorable single-band segmentation. SVM tested over given Finally, demonstrate effectiveness choosing right amount data, use only reflectance train artificial neural network, BandNet. Even with basic architecture, BandNet proportionate known architectures semantic segmentation, achieving 92.47 mIOU requires fraction time resources run inference, making it suitable be deployed web monitor bodies localized regions. Our codebase at https://github.com/IamShubhamGupto/BandNet .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Using Kernel Methods in a Learning Machine Approach for Multispectral Data Classification. An Application in Agriculture

Most pattern recognition applications within the Geoscience field involve the clustering and classification of remote sensed multispectral data, which basically aims to allocate the right class of ground category to a reflectance or radiance signal. Generally, the complexity of this problem is related to the incorporation of spatial characteristics that are complementary to the nonlinearities o...

متن کامل

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

Using Machine Learning for Exploratory Data Analysis

This tutorial will introduce attendees to fundamental concepts in the clustering and dimensionality reduction fields of unsupervised machine learning. Attendees will learn about the assumptions algorithms make and how those assumptions can cause the algorithms to be more or less suited to particular datasets. Hands-on interaction with machine learning algorithms on real and synthetic data are a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture notes in networks and systems

سال: 2023

ISSN: ['2367-3370', '2367-3389']

DOI: https://doi.org/10.1007/978-981-19-7867-8_56